Identifying signatures of selection at the enhancer of split neurogenic gene complex in Drosophila.
نویسندگان
چکیده
The Enhancer of split gene complex (E(spl)-C) is one of the more highly annotated gene regions in Drosophila, and the 12 genes within the complex help determine the spacing and patterning of adult bristles. Any E(spl)-C coding, transcribed, or cis-regulatory regions experiencing nonneutral evolution are strong candidates to harbor polymorphisms contributing to naturally occurring variation in bristle number. We confirm that the E(spl)-C is strongly conserved and show that 74% of regulatory elements previously identified in D. melanogaster are conserved in D. pseudoobscura. Regulatory elements in enhancer regions show lower nucleotide diversity and more rare polymorphisms compared with adjacent nonregulatory DNA, suggesting they are under purifying selection, and these effects are particularly pronounced when considering only conserved regulatory elements. The ratio of polymorphism to divergence was significantly different between binding sites and nonbinding sites for transcription factors within enhancer regions, suggesting the action of some form of selection. Too few polymorphisms in regions of the 3' UTR harboring regulatory motifs prevents adequate comparison of diversity and the polymorphism frequency spectrum between 3' UTR motif and nonmotif sequence. We identified at least two broad regions of the gene complex showing strong population subdivision among four populations, which is suggestive of local adaptation or background selection. Finally, two regions of the E(spl)-C exhibit low nucleotide diversity, a high level of rare polymorphisms, and an increase in linkage disequilibrium, which together suggest the action of positive selection. Notably, the gene m2 shows a significant deviation from neutrality by the McDonald-Kreitman test and resides in one of the two regions putatively experiencing a selective sweep. All sites in regions apparently visible to various selective forces are candidates for future work to determine their phenotypic effects.
منابع مشابه
Inhibition of cell fate in Drosophila by Enhancer of split genes
The neurogenic genes of Drosophila act during many different times and places during development. It is thought their role is to repress cell fate within a group of equivalent cells and thus allow the singling out of discrete numbers of precursors. Amongst the genes at the neurogenic locus, Enhancer of split is a family of seven related genes that encode proteins containing the basic helix-loop...
متن کاملDrosophila evolution challenges postulated redundancy in the E(spl) gene complex.
The Enhancer of split [E(spl)] gene complex belongs to the class of neurogenic loci, which, in a concerted action, govern neurogenesis in Drosophila. Two genetically distinct functions, vital and neurogenic, reside within the complex defined by lethal mutations in the l(3) gro gene and by the typical neurogenic phenotype of deletions, respectively. Such deletions always affect several of the ma...
متن کاملThe Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo.
The Enhancer of split locus is required during many cell-fate decisions in Drosophila, including the segregation of neural precursors in the embryo. We have generated monoclonal antibodies that recognise some of the basic helix-loop-helix proteins encoded by the Enhancer of split locus and have used them to examine expression of Enhancer of split proteins during neurogenesis. The proteins are e...
متن کاملSeven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins.
Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex w...
متن کاملExpression of the helix-loop-helix factor, Hes3, during embryo development suggests a role in early midbrain-hindbrain patterning
The Hes gene family members are mammalian homologues of the Drosophila hairy and Enhancer of split genes. hairy and Enhancer of split function in both segmentation and in the Notch neurogenic pathway during Drosophila embryo development. Previous expression data suggested a conserved role for the Hes genes in the Notch signalling pathway, but not in segmentation. Here, Hes3 expression during mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2005